Search results for "Monge-Ampère equation"

showing 10 items of 11 documents

Shape optimization for monge-ampére equations via domain derivative

2011

In this note we prove that, if $\Omega$ is a smooth, strictly convex, open set in $R^n$ $(n \ge 2)$ with given measure, the $L^1$ norm of the convex solution to the Dirichlet problem $\det D^2 u=1$ in $\Omega$, $u=0$ on $\partial\Omega$, is minimum whenever $\Omega$ is an ellipsoid.

Dirichlet problemMathematical optimizationPure mathematicsFictitious domain methodDomain derivativeApplied MathematicsOpen setRegular polygonMonge–Ampère equationMonge-Ampère equationSettore MAT/05 - Analisi MatematicaGeneralizations of the derivativeNorm (mathematics)Discrete Mathematics and CombinatoricsAffine isoperimetric inequalitiesConvex functionAnalysisMathematics
researchProduct

Comparison results for Monge - Ampère type equations with lower order terms

2003

In this paper we deal with Monge-Ampère type equations in two dimensions and, using the symmetrization with respect to the perimeter, we prove some comparison results for solutions of such equations involving the solutions of conveniently symmetrized problems.

RearrangementsMathematics::Complex VariablesIndependent equationApplied MathematicsMathematical analysisMathematics::Analysis of PDEsComparison resultsSymmetrizationLower orderType (model theory)Monge-Ampère equationsPerimeterSettore MAT/05 - Analisi MatematicaSimultaneous equationsFully nonlinear elliptic equationsSymmetrizationAmpereAnalysisMathematics
researchProduct

Viscosity solutions of the Monge-Ampère equation with the right hand side in Lp

2007

We compare various notions of solutions of Monge-Ampère equations with discontinuous functions on the right hand side. Precisely, we show that the weak solutions defined by Trudinger can be obtained by the vanishing viscosity approximation method. Moreover, we investigate existence and uniqueness of Lp-viscosity solutions.

Monge-Ampère equationsViscosityClassical mechanicsViscosity solutions; weak solutions; Monge-Ampère equationsSettore MAT/05 - Analisi MatematicaGeneral MathematicsViscosity solutionsweak solutionsMathematical analysisMonge–Ampère equationMathematics
researchProduct

On a time-depending Monge-Ampère type equation

2012

Abstract In this paper, we prove a comparison result between a solution u ( x , t ) , x ∈ Ω ⊂ R 2 , t ∈ ( 0 , T ) , of a time depending equation involving the Monge–Ampere operator in the plane and the solution of a conveniently symmetrized parabolic equation. To this aim, we prove a derivation formula for the integral of a smooth function g ( x , t ) over sublevel sets of u , { x ∈ Ω : u ( x , t ) ϑ } , ϑ ∈ R , having the same perimeter in R 2 .

Pure mathematicsDerivation formulaPlane (geometry)Applied MathematicsOperator (physics)Mathematical analysisComparison resultsSymmetrizationMonge-Ampère equationType equationSettore MAT/05 - Analisi MatematicaAmpereAnalysisMathematics
researchProduct

Monge-Ampere type equations: Comparative results

2003

Summary of the PhD thesis

symmetrizationSettore MAT/05 - Analisi MatematicaMonge-Ampère equation
researchProduct

A symmetrization result for Monge–Ampère type equations

2007

In this paper we prove some comparison results for Monge–Ampere type equations in dimension two. We also consider the case of eigenfunctions and we derive a kind of “reverse” inequalities. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Mathematics::Complex VariablesGeneral MathematicsMathematical analysisComparison resultsMonge-Ampère equationEigenfunctionType (model theory)Monge-Ampère equationsDimension (vector space)Settore MAT/05 - Analisi Matematicaeigenvalue problemrearrangementsSymmetrizationAmpereEigenvalue problemsMathematicsMathematische Nachrichten
researchProduct

Stability of radial symmetry for a Monge-Ampère overdetermined problem

2008

Recently the symmetry of solutions to overdetermined problems has been established for the class of Hessian operators, including the Monge-Ampère operator. In this paper we prove that the radial symmetry of the domain and of the solution to an overdetermined Dirichlet problem for the Monge-Ampère equation is stable under suitable perturbations of the data. © 2008 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag.

Hessian matrixDirichlet problemoverdetermined problemMathematics::Complex VariablesApplied MathematicsMathematical analysisMathematics::Analysis of PDEsSymmetry in biologyMonge–Ampère equationMonge-Ampère equationComputer Science::Numerical AnalysisDomain (mathematical analysis)Symmetry (physics)Overdetermined systemsymbols.namesakeOperator (computer programming)Settore MAT/05 - Analisi MatematicasymbolsOverdetermined problemsStabilityIsoperimetric inequalityMathematics
researchProduct

New isoperimetric estimates for solutions to Monge - Ampère equations

2009

Abstract We prove some sharp estimates for solutions to Dirichlet problems relative to Monge–Ampere equations. Among them we show that the eigenvalue of the Dirichlet problem, when computed on convex domains with fixed measure, is maximal on ellipsoids. This result falls in the class of affine isoperimetric inequalities and shows that the eigenvalue of the Monge–Ampere operator behaves just the contrary of the first eigenvalue of the Laplace operator.

Dirichlet problemMonge-Ampère operatoreigenvalue.Mathematics::Complex VariablesApplied MathematicsMathematical analysisMathematics::Analysis of PDEsMonge–Ampère equationMonge-Ampère equationMathematics::Spectral TheoryMeasure (mathematics)Operator (computer programming)Settore MAT/05 - Analisi MatematicaAffine isoperimetric inequaltieRayleigh–Faber–Krahn inequalityAffine isoperimetric inequalitiesIsoperimetric inequalityLaplace operatorMathematical PhysicsAnalysisEigenvalues and eigenvectorsMathematics
researchProduct

Perimeter symmetrization of some dynamic and stationary equations involving the Monge-Ampère operator

2017

We apply the perimeter symmetrization to a two-dimensional pseudo-parabolic dynamic problem associated to the Monge-Ampere operator as well as to the second order elliptic problem which arises after an implicit time discretization of the dynamical equation. Curiously, the dynamical problem corresponds to a third order operator but becomes a singular second order parabolic equation (involving the 3-Laplacian operator) in the class of radially symmetric convex functions. Using symmetrization techniques some quantitative comparison estimates and several qualitative properties of solutions are given.

DiscretizationMathematical analysisPerimeter symmetrizationPseudoparabolic dynamic Monge-Ampère equationThird orderOperator (computer programming)Dynamic problemSettore MAT/05 - Analisi MatematicaTwo-dimensional domainSymmetrizationOrder (group theory)AmpereConvex functionMathematics
researchProduct

Convexities and optimal transport problems on the Wiener space

2013

The aim of this PhD is to study the optimal transportation theory in some abstract Wiener space. You can find the results in four main parts and they are aboutThe convexity of the relative entropy. We will extend the well known results in finite dimension to the Wiener space, endowed with the uniform norm. To be precise the relative entropy is (at least weakly) geodesically 1-convex in the sense of the optimal transportation in the Wiener space.The measures with logarithmic concave density. The first important result consists in showing that the Harnack inequality holds for the semi-group induced by such a measure in the Wiener space. The second one provides us a finite dimensional and dime…

Convexité[ MATH.MATH-GM ] Mathematics [math]/General Mathematics [math.GM][MATH.MATH-GM] Mathematics [math]/General Mathematics [math.GM]Monge-Ampère equationConvexityMonge problem[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM]Dimension infinieTransport optimalLogarithmic concave measureWiener spaceEspace de WienerOptimal transportÉquation de Monge-AmpèreMesure logarithmiquement concaveProblème de MongeInfinite dimension
researchProduct